Introduction
The On Prem Platform provides an Edge aPaaS specialized in deploying workloads to baremetal resource-constrained devices.
It aims to provide Heroku and Digital Ocean types of cloud developer experiences, to help you bring your control plane to your on-premise devices, without the use of heavyweight virtual machines or operator-intensive Kubernetes. This enables developers to implement low-latency control functions such as interacting with IoT busses or performing edge ETL.
A cloud-hosted control plane is made available at console.on-prem.net and api.on-prem.net, and is ready for use by edge devices such as Raspberry Pi that are able to phone home to the cloud.
Architecture
graph TB; subgraph Clients[Clients / Edge] cli[CLI] console[Console] on-prem-agent[Agent] end subgraph API[Control Plane] agent_grpc_server[Agent gRPC Service] rest_endpoint[REST Endpoint] user_grpc_server[User gRPC Service] storage_grpc_server[Storage Service] end subgraph Backing Services mongo[(MongoDB)] redis[(Redis)] stripe[Stripe] prometheus[(Prometheus)] end agent_grpc_server ---> storage_grpc_server; cli --> user_grpc_server; console ---> rest_endpoint; on-prem-agent <-- tunnel stream --> agent_grpc_server; rest_endpoint ---> user_grpc_server; storage_grpc_server ---> mongo; storage_grpc_server ---> redis; storage_grpc_server --> prometheus; user_grpc_server -- use tunnel --> agent_grpc_server; user_grpc_server ---> storage_grpc_server; user_grpc_server -- metered billing --> stripe
Agent
The primary component is the Agent, a lean Rust-based next generation software agent purpose-built to leverage hardware acceleration for low-latency high-throughput signal processing. The agent is capable of running Kubernetes-style robotic control loops autonomously at the edge, while phoning home to the control plane when connectivity permits. When connected, it downloads new configuration bundles, uploads telemetry, and makes a reverse-tunnel available to Redfish datacenter management software. It embeds many common management services, including the equivalent of Prometheus Node Exporter, to ensure the lightest possible footprint and management overhead on resource-constrained devices. The agent performs systems management functions such as power management, fan control, fabric management, and signal acquisition through comprehensive hardware integrations with BitScope Cluster Blades, and with other popular equipment such as SixFab and Argon 40 HATs using a variety of IoT busses including serial and I²C.
API
An API service acts as the control plane, providing endpoints for REST (used by the web ui), and gRPC (used by the CLI and by agents).
It uses MongoDB for primary storage, Redis for caching and distributed coordination, and a Prometheus-compatible database such as VictoriaMetrics for aggregated time-series storage.
Console
A web console provides a collaborative device management experience inspired by the ease of use of Digital Ocean. A stateless router ensures that every function uses a RESTful URL so that bookmarks can be sent via instant messenger or email for team collaboration.
CLI
A CLI enables GitOps and DevOps workflows by providing idempotent configuration capabilities via yaml or json files. The CLI provides access to the full set of functionality provided by the web console.
$ onprem get devices
┌──────────────────────┬───────────────┬──────────────┬─────────────┬───────────────────────────────────┬─────────────────┬─────────┐
│ id ┆ name ┆ manufacturer ┆ model ┆ uuid ┆ lastIpAddr ┆ tainted │
│ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- │
│ str ┆ str ┆ str ┆ str ┆ str ┆ str ┆ bool │
╞══════════════════════╪═══════════════╪══════════════╪═════════════╪═══════════════════════════════════╪═════════════════╪═════════╡
│ cfv5v3h32ckl0mq6al70 ┆ c001-b8-n01 ┆ Raspberry Pi ┆ 4B Rev 1.4 ┆ 8938301d-9e32-5470-8f2b-0dd379cb… ┆ 192.168.241.57 ┆ false │
│ cfv5v8932ckl0mq6amc0 ┆ c001-b8-n03 ┆ Raspberry Pi ┆ 4B Rev 1.4 ┆ 692c82a0-a2ea-550a-9caa-e42debf0… ┆ 192.168.241.56 ┆ false │
│ cfv60ah32ckl0mq6au60 ┆ c001-b8-n04 ┆ Raspberry Pi ┆ 4B Rev 1.4 ┆ acc28e51-0f57-552b-a36e-9023db67… ┆ 192.168.241.55 ┆ false │
│ cfv60o932ckl0mq6b1d0 ┆ c001-b8-n05 ┆ Raspberry Pi ┆ 4B Rev 1.4 ┆ 8225ad60-4ce5-5f8e-958f-0a78a0d6… ┆ 192.168.241.58 ┆ false │
│ cfv60vp32ckl0mq6b38g ┆ c001-b8-n06 ┆ Raspberry Pi ┆ 4B Rev 1.4 ┆ c55f0ba1-359c-5cda-a2d2-c6601428… ┆ 192.168.241.54 ┆ false │
│ cfv624132ckl0mq6bbi0 ┆ c001-b8-n07 ┆ Raspberry Pi ┆ 4B Rev 1.4 ┆ 6af5f0a6-af50-57ce-ba78-9435e223… ┆ 192.168.240.58 ┆ false │
│ cfv623h32ckl0mq6bbc0 ┆ c001-b8-n08 ┆ Raspberry Pi ┆ 4B Rev 1.4 ┆ e430593d-36ce-5f26-9c14-9d6ccaeb… ┆ 192.168.240.57 ┆ false │
│ cfv634h32ckl0mq6bjbg ┆ c001-b8-n09 ┆ Raspberry Pi ┆ 4B Rev 1.4 ┆ 0313d666-d3ed-5656-8468-0ceb1417… ┆ 192.168.240.53 ┆ false │
│ ch2ql7p32ckj9ndqd200 ┆ c006-n1 ┆ NVIDIA ┆ Jetson Nano ┆ 185b8d7c-5c4a-5f63-86d9-d80bbf72… ┆ 192.168.241.123 ┆ false │
│ chai28932ckjgou9an3g ┆ c006-n2 ┆ NVIDIA ┆ Jetson Nano ┆ 8ed6b72b-9056-5f3e-8ef4-9a1e537d… ┆ 192.168.241.162 ┆ false │
│ cht7np132ckk7b39k6o0 ┆ seeed-0 ┆ NVIDIA ┆ null ┆ 4791cb95-1f40-547f-be80-af538afa… ┆ 192.168.242.14 ┆ false │
│ cht7nv932ckk7b39k8e0 ┆ seeed-1 ┆ NVIDIA ┆ null ┆ a9514069-59a1-5301-83e1-51b493fa… ┆ 192.168.242.15 ┆ false │
│ cht7o4h32ckk7b39k9tg ┆ seeed-2 ┆ NVIDIA ┆ null ┆ d238d655-3f1e-56db-bc2d-563e57c5… ┆ 192.168.242.16 ┆ false │
│ cht7o9932ckk7b39kb7g ┆ seeed-3 ┆ NVIDIA ┆ null ┆ b3bd7b4f-43b9-5c72-bc83-b7ce6874… ┆ 192.168.242.17 ┆ false │
│ cjprdbc3v1vsmvpqo980 ┆ c006-n1 ┆ NVIDIA ┆ Jetson Nano ┆ 185b8d7c-5c4a-5f63-86d9-d80bbf72… ┆ 192.168.241.123 ┆ false │
│ cjprdt43v1vsmvpqoaug ┆ c006-n2 ┆ NVIDIA ┆ Jetson Nano ┆ 8ed6b72b-9056-5f3e-8ef4-9a1e537d… ┆ 192.168.241.162 ┆ false │
└──────────────────────┴───────────────┴──────────────┴─────────────┴───────────────────────────────────┴─────────────────┴─────────┘
Agent
The On Prem Agent is installed on computer systems to enable remote management.
Agent Installation
Debian Agent Installation
Installation on Debian based operating systems, which includes Raspberry Pi OS, involves the following steps:
- Register our APT repository's public key
- Register our APT repository
- Refresh your packages index
- Install our agent
- Tell systemd to start our agent
- Tell systemd to enable our agent, ensuring it gets started after reboots
wget -qO - https://apt.on-prem.net/public.key | sudo tee /etc/apt/trusted.gpg.d/on-prem.asc
VERSION_CODENAME=`grep "VERSION_CODENAME=" /etc/os-release |awk -F= {' print $2'}|sed s/\"//g`
echo "deb https://apt.on-prem.net/ ${VERSION_CODENAME} main" | sudo tee /etc/apt/sources.list.d/on-prem.list
sudo apt-get update
sudo apt-get -y install on-prem-agent
sudo systemctl start on-prem-agent
sudo systemctl enable on-prem-agent
Provision an API Key
Next, use our cloud console to provision an API Key, which the agent will use to authenticate with the API service.
Configure agent with your API Key
Edit the agent config file to set your api key. The agent will automatically detect when you save a change to this file (much like kubelet if you're familiar with Kubernetes), and then a full startup will follow.
$ sudo vi /etc/on-prem/agent.yml
...
api_key: c1h0....6vlg
Monitor agent log
To see what the agent is doing, you can monitor its log as follows. Also, you can enable the "debug: true" entry in the config file to increase the logging verbosity.
$ sudo journalctl -u on-prem-agent -f
May 04 16:50:22 c002-n1 systemd[1]: Started On-Prem Agent.
May 01 16:50:22 c002-n1 on-prem-agent[675]: [INFO on_prem_agent] On Prem Agent 1.4.2
May 01 16:50:22 c002-n1 on-prem-agent[675]: [INFO on_prem_agent::configdb::jamm] Opened config db /var/lib/on-prem/agent-config.db
May 01 16:50:26 c002-n1 on-prem-agent[675]: [INFO on_prem_agent::datadb::sled] Opened data db /var/lib/on-prem/agent-data.db
May 01 16:50:26 c002-n1 on-prem-agent[675]: [INFO on_prem_agent] Connected to https://api.on-prem.net
Docker Agent Installation
Provision an API Key
Start by provisionining an API Key, which the agent will use to authenticate with the API service.
Download image
Our default image shown below is a multi-architecture manifest, that should automatically provide you with an image compatible with your current hardware architecture.
docker pull onpremnet/agent
Run Interactively
Running interactively is the most efficient way to test new configurations. If anything doesn't work, just Ctrl+C, make some tweaks, then try again.
docker run -e 'API_KEY=__PASTE_YOUR_API_KEY__' -it onpremnet/agent
Run as a daemon
docker run -e 'API_KEY=__PASTE_YOUR_API_KEY__' -d onpremnet/agent
Kubernetes Agent Installation
Provision an API Key
Start by provisionining an API Key, which the agent will use to authenticate with the API service.
Run as a DaemonSet on every node
Create the following file, using your API Key:
# daemonset.yaml
apiVersion: apps/v1
kind: DaemonSet
metadata:
name: on-prem-agent
#namespace: default
labels:
app: on-prem-agent
spec:
selector:
matchLabels:
name: on-prem-agent
template:
metadata:
labels:
app: on-prem-agent
spec:
tolerations:
# this toleration is to have the daemonset runnable on master nodes
# remove it if your masters can't run pods
- key: node-role.kubernetes.io/master
effect: NoSchedule
containers:
- name: on-prem-agent
image: onpremnet/agent:latest
env:
- name: API_KEY
value: __PASTE_YOUR_API_KEY__
resources:
limits:
memory: 100Mi
requests:
cpu: 100m
memory: 200Mi
terminationGracePeriodSeconds: 30
And then apply it to your cluster:
kubectl apply -f daemonset.yaml
CLI
The CLI provides convenient access to the On Prem control plane (API service), and includes typical CLI conveniences such as caching of credentials.
CLI Installation
Debian CLI Installation
Installation on Debian based operating systems, which includes Raspberry Pi OS, involves the following steps:
- Register our APT repository's public key
- Register our APT repository
- Refresh your packages index
- Install the CLI
wget -qO - https://apt.onprem.net/public.key | sudo tee /etc/apt/trusted.gpg.d/onprem.asc
VERSION_CODENAME=`grep "VERSION_CODENAME=" /etc/os-release |awk -F= {' print $2'}|sed s/\"//g`
echo "deb https://apt.onprem.net/ ${VERSION_CODENAME} main" | sudo tee /etc/apt/sources.list.d/onprem.list
sudo apt-get update
sudo apt-get -y install onprem-cli
Getting Help
$ onprem
USAGE:
onprem [OPTIONS] <SUBCOMMAND>
FLAGS:
-h, --help Prints help information
-V, --version Prints version information
OPTIONS:
--api-key <api-key> API Key used to authorize requests
--api-url <api-url> Customize the API URL
SUBCOMMANDS:
help Prints this message or the help of the given subcommand(s)
import
login
logout
redfishtool
Docker CLI Installation
On Prem Docker images are multi-platform images that will automatically provide you with an image compatible with your current hardware architecture.
$ docker pull onpremnet/cli
Run Interactively
$ docker run -it onpremnet/cli --help
USAGE:
onprem [OPTIONS] <SUBCOMMAND>
FLAGS:
-h, --help Prints help information
-V, --version Prints version information
OPTIONS:
--api-key <api-key> API Key used to authorize requests
--api-url <api-url> Customize the API URL
SUBCOMMANDS:
help Prints this message or the help of the given subcommand(s)
import
login
logout
redfishtool
How to provide authorization
$ docker run -it onpremnet/cli --api-key __REDACTED__ redfishtool Systems list
CLI Usage
Logging In
Use the On Prem Console to provision an API Key, which the CLI can use to authenticate with the API service.
$ onprem --api-key __REDACTED__ login
API Key written to ~/.on-prem/config
CLI Apply Subcommand
The apply subcommand focuses on synchronizing the control plane with records of various record types that are defined locally in JSON or YAML files. This enables bootstrapping of the control plane using GitOps. With this in mind, operations focus on idempotency, so that running any given operation a 2nd time is harmless and/or just back-fills or resumes where a prior attempt might have left off.
CLI Apply Chassis Types
Chassis types appear in a dropdown when creating or editing chassis records via the web ui. For new deployments with known equipment, the CLI makes it possible to seed this data from files.
Curate your assets
Using a directory managed by version control such as git, lay out a directory structure containing YAML or JSON assets. Any depth of folder hierarchy is supported.
my-assets/
bitscope/
blades/
CB04B.yaml
rackmounts/
ER08A.yaml
uctronics/
rackmounts/
U6258.json
The JSON layout of a chassis type can be scraped via the web browser's JavaScript console, or this example can be used:
# my-chassis-types/bitscope/blades/CB04B.yaml
id: c0lrpqun8s3m99789sgg
kind: ChassisType
manufacturer: BitScope
model: Cluster Blade
partNumber: CB04B
type: Blade
url: "http://my.bitscope.com/store/?p=view&i=product+CB04B"
capabilities:
deviceCapacity: 4
Importing
Leave off the --dry-run
flag to perform an actual import.
$ onprem apply --dry-run ./my-chassis-types
Writing a lambda to augmenting Redfish ComputerSystem info with BitScope Station IDs
Alongside the chassis definition, you might also want to define lambdas specific to the hardware. This example shows how the On Prem platform defines the lambda that performs Station ID discovery for nodes mounted on a BitScope Cluster Blade.
The lambda is triggered by the On Prem Service Broker Toolkit trigger event clq6t05uc97j94h99c4g
, which is
invoked whenever the On Prem Agent is asked by the control plane to provide the Redfish ComputerSystem info
for the current node. Operators are free to define their own custom Lamba Triggers; this just
happens to be one that is built into the agent and available to all deployments.
Directory structure:
my-chassis-types/ BitScope/ blades/ cb04b/ cb04b.yaml cb04b.jpg bitscope_cb04b_collect_redfish_computer_system.lua bitscope_cb04b_collect_redfish_computer_system.yaml
$ onprem generate xid
clq7735uc97jteljcm70
# collect_redfish_computer_system.yaml
id: clq7735uc97jteljcm70
kind: Lambda
triggerType: clq6t05uc97j94h99c4g
name: bitscope_cb04b_collect_redfish_computer_system
description: >
When a BMC is present, such as when a device is mounted on a CB04B Cluster Blade, collect
the station ID and other details into the Redfish Oem field.
runAt:
allDevices: true
scriptContentType: text/x-lua
script: "@bitscope_cb04b_collect_redfish_computer_system.lua"
-- bitscope_cb04b_collect_redfish_computer_system.lua
local Serial = require('periphery').Serial
local M = {}
local function parse_status_line(line)
local words = {}
for word in line:gmatch('[^%s]+') do
words[#words + 1] = word
end
assert(#words == 5)
local id = tonumber(words[1], 16)
local ms = tonumber(words[2], 16)
local pwr = tonumber(words[3], 16)
local cur = tonumber(words[4], 16)
local fan = tonumber(words[5], 16)
return id, ms, pwr, cur, fan
end
local function readline(serial, maxLength, timeout)
local line = ''
for i = 1, maxLength + 1 do
local c = serial:read(1, timeout)
if c == nil or c == '\n' then
break
end
line = line .. c
end
return line
end
local function write_command(serial, command, timeout_ms)
for i = 1, #command do
local c = command:sub(i, i)
serial:write(c)
assert(serial:read(1, timeout_ms) == c)
end
end
local function get_status(serial, timeout_ms)
write_command(serial, '=', timeout_ms)
assert(serial:read(1, timeout_ms) == '\n')
local line = readline(serial, 14, timeout_ms)
return parse_status_line(line)
end
local function get_uuid(serial, timeout_ms)
write_command(serial, '#', timeout_ms)
assert(serial:read(1, timeout_ms) == '\n')
local uuid = readline(serial, 36, timeout_ms)
assert(#uuid == 36)
return uuid
end
local function collect(serial, timeout_ms, event)
-- Populate oem['bitscope.com'] field
local oem = event['oem']
if oem == nil then
oem = {}
event['oem'] = oem
end
local oem_bitscope = oem['bitscope.com']
if oem_bitscope == nil then
oem_bitscope = {}
oem['bitscope.com'] = oem_bitscope
end
-- Populate oem['bitscope.com']['station'] field
local id, _, _, _, _ = get_status(serial, timeout_ms)
oem_bitscope['station'] = id
-- Populate oem['bitscope.com']['uuid'] field
oem_bitscope['uuid'] = get_uuid(serial, timeout_ms)
return event
end
function M.handler(event, context)
local device = '/dev/serial0'
local f = io.open(device, 'r')
if f ~= nil then
local serial = Serial(device, 115200)
event = collect(serial, 50, event)
end
return event
end
return M
The end result a Redfish record augmented with Oem info specific to the hardware:
CLI Apply Device Types
Device types appear in a dropdown when creating or editing device records via the web ui. For new deployments with known equipment, the CLI makes it possible to seed this data from files.
Curate your assets
Using a directory managed by version control such as git, lay out a directory structure containing YAML or JSON assets. Any depth of folder hierarchy is supported.
my-device-types/
RaspberryPi/
3B+.yaml
4B.yaml
Seeed/
JetsonMateClusterAdvanced.yaml
The JSON layout of a device type can be scraped via the web browser's JavaScript console, or this example can be used:
# my-device-types/RaspberryPi/4B.yaml
id: ce5agg932ckm7ftm6dqg
kind: DeviceType
manufacturer: Raspberry Pi
model: 4B
Importing
Leave off the --dry-run
flag to perform an actual import.
$ onprem apply --dry-run ./my-device-types/
CLI Apply HAT Types
HAT types appear in a dropdown when creating or editing device records via the web ui. For new deployments with known equipment, the CLI makes it possible to seed this data from files.
Curate your assets
Using a directory managed by version control such as git, lay out a directory structure containing YAML or JSON assets. Any depth of folder hierarchy is supported.
my-hat-types/
Argon40/
FanHat.yaml
Seeed
UpsWithRtcCoulometer.yaml
SixFab/
UpsHat.yaml
The JSON layout of a HAT type can be scraped via the web browser's JavaScript console, or this example can be used:
# my-hat-types/SixFab/UpsHat.yaml
id: c22b9mqo5ld9h3po1jcg
kind: HatType
manufacturer: Sixfab
model: Power Management & UPS HAT for Raspberry Pi
partNumber: "62915"
url: "https://sixfab.com/power/"
Importing
Leave off the --dry-run
flag to perform an actual import.
$ onprem apply --dry-run ./my-hat-types/
Writing a device driver for fan control
Alongside the HAT definition, you might also want to define lambdas specific to the hardware. This example shows how the On Prem platform defines the lambda that performs fan control for Argon 40 Fan HATs.
The lambda is triggered by the On Prem Service Broker Toolkit trigger event clqr195uc97nh8rtn1d0
, which is
invoked whenever the On Prem Agent needs to drive a fan to reconcile a Fan Profile "desired state"
with a fan speed "actual state". Operators are free to define their own custom Lamba Triggers; this just
happens to be one that is built into the agent and available to all deployments.
Directory structure:
my-hat-types/ ⌞ Argon40/ FanHat.yaml argon40_fan_control.yaml argon40_fan_control.lua
$ onprem generate xid
clqejgco47mll531pr1g
# argon40_fan_control.yaml
id: clqejgco47mll531pr1g
kind: Lambda
triggerTypeId: clqr195uc97nh8rtn1d0
name: argon40_fan_control
description: >
Drive the fan on an Argon Fan HAT.
runAt:
allDevices: true
scriptContentType: text/x-lua
script: "@argon40_fan_control.lua"
-- argon40_fan_control.lua
local I2C = require('periphery.I2C')
local M = {}
function M.handler(event, context)
if event.hatTypeId == 'c5d549vqrh9ga1fc4ddg' then
local i2c = I2C('/dev/i2c-1')
local message = { event.speed }
return i2c:transfer(0x1a, { message })
end
end
return M
CLI Apply Services and Plans
Services and Plans form the basis of the On Prem Platform's integrated Open Service Broker, a service offering catalog standard popularized by Cloud Foundry. Service Brokers are now commonly used in Kubernetes clusters to enable self-service for users who wish to provision and use managed resources.
Services form the "service offerings" for your deployment, or ways that you intend lease the edge infrastructure you wish to offer consumers. Service offerings can include both hardware rental type offerings, and managed edge services that will be installed onto devices via the agent such as object storage, block storage, or databases and queues.
The On Prem Console demonstrates a few built-in service offerings which are visible under the Marketplace section of the left navbar.
Curate your assets
Using a directory managed by version control such as git, lay out a directory structure containing YAML or JSON assets.
my-services/
systems_management/
systems_management.png
systems_management.yaml
systems_management-longDescription.md
plans/
hobbyist.yaml
professional.yaml
enterprise.yaml
raspberry_pi_4b/
raspberry_pi_4b.png
raspberry_pi_4b.yaml
raspberry_pi_4b-longDescription.md
plans/
2gb_basic_60.json
2gb_storage_optimized_60.json
2gb_storage_optimized_1000.json
4gb_basic_60.json
4gb_storage_optimized_60.json
4gb_storage_optimized_1000.json
8gb_basic_60.yaml
8gb_storage_optimized_60.yaml
8gb_storage_optimized_1000.yaml
The JSON layout of a service can be scraped via the web browser's JavaScript console, or this example can be used:
# my-services/raspberry_pi_4b.yaml
id: c6ft22nqrh9nif3r49m0
kind: Service
name: raspberry_pi_4b
displayName: Raspberry Pi 4B
visible: true
metadata:
capability_linux: "true"
tags:
- device
And a plan:
# my-services/raspberry_pi_4b/plans/8gb_storage_optimized_1000.yaml
id: c6ft3tvqrh9nif3r49q0
kind: Plan
serviceId: c6ft22nqrh9nif3r49m0
name: storage_optimized_8_1000
displayName: 8GB Storage Optimized 1TB
description: 8 GB RAM, 1 TB SSD
visible: true
metadata:
bullets:
- 1 TB mSATA SSD over USB 3.0
costs:
- amount:
usd: 80
unit: MONTHLY
memory_gb: 8
storage_class: optimized
storage_gb: 1000
storage_type: mSATA SSD
Importing
Leave off the --dry-run
flag to perform an actual import.
$ onprem apply --dry-run ./my-services/
Metered Billing
When Megalithic LLC operates the On Prem Platform in the cloud, Stripe Subscriptions are used to achieve metered billing.
Licensees of the platform who operate it in their own environment have the opportunity to implement their own customized metered billing integrations.
CLI Curl Subcommand
This subcommand offers a curl-compatible CLI interface. Operations are performed on a remote device.
graph LR; cli --> control_plane; control_plane <-- tunnel --> agent; subgraph user_edge[User Edge] cli[CLI]; end subgraph cloud[Cloud <small>api.on-prem.net</small>] control_plane[Control Plane]; end subgraph device_edge[Device Edge] agent[Agent]; end
Download a file
$ onprem curl --device cibiquh32ckn0os7791g --fail -O https://apt.onprem.net/public.key
File written to "public.key"
CLI Get Subcommand
The get
subcommand provides read access to records. There is a singular and plural subcommand for each
managed object type. Type the get
subcommand without any additional parameters for the comprehensive list:
$ onprem get
Usage: onprem get <COMMAND>
Commands:
api-key
api-keys
chasses
chassis
chassis-type
chassis-types
device
devices
...
Output Formats
Supported output formats include [arrow
, json
, markdown
, ps
, and wide
]. The ps
and wide
format definitions are borrowed from
kubectl.
Examples
Get devices
$ onprem get devices
┌──────────────────────┬───────────────┬──────────────┬─────────────┬──────────┬───────────────────────────────────┬─────────────────┬─────────┐
│ id ┆ name ┆ manufacturer ┆ model ┆ assetTag ┆ uuid ┆ lastIpAddr ┆ tainted │
│ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- │
│ str ┆ str ┆ str ┆ str ┆ str ┆ str ┆ str ┆ bool │
╞══════════════════════╪═══════════════╪══════════════╪═════════════╪══════════╪═══════════════════════════════════╪═════════════════╪═════════╡
│ c6uso9fqrh9u4hh2bnng ┆ c003-n4 ┆ Raspberry Pi ┆ 4B Rev 1.4 ┆ def ┆ e3f42058-9100-5b9b-ba4e-0b81f98f… ┆ 192.168.240.25 ┆ false │
│ c6ut2ffqrh9u4hh2bnqg ┆ c003-n1 ┆ Raspberry Pi ┆ 4B Rev 1.4 ┆ null ┆ 02da31b3-6f0e-5558-bf9f-930b7ed0… ┆ 192.168.240.47 ┆ false │
│ cft7kep32ckrvnbjkt7g ┆ c003-n3 ┆ Raspberry Pi ┆ 4B Rev 1.2 ┆ null ┆ 0c9af28b-bc4f-571f-9c7a-5240f475… ┆ 192.168.240.44 ┆ false │
│ ch2ql7p32ckj9ndqd200 ┆ c006-n1 ┆ NVIDIA ┆ Jetson Nano ┆ null ┆ 185b8d7c-5c4a-5f63-86d9-d80bbf72… ┆ 192.168.241.123 ┆ false │
│ chai28932ckjgou9an3g ┆ c006-n2 ┆ NVIDIA ┆ Jetson Nano ┆ null ┆ 8ed6b72b-9056-5f3e-8ef4-9a1e537d… ┆ 192.168.241.162 ┆ false │
│ ci2fabp32ckvhk1g9qe0 ┆ bitscope-0 ┆ Raspberry Pi ┆ 4B Rev 1.4 ┆ null ┆ 070b9dbf-437a-59e2-b84d-bcabaa3d… ┆ 192.168.240.43 ┆ false │
└──────────────────────┴───────────────┴──────────────┴─────────────┴──────────┴───────────────────────────────────┴─────────────────┴─────────┘%
Get devices in Arrow Format
$ onprem get devices -o arrow > mydevices.arrow
Get Chassis Types in JSON Format
$ onprem get chassis-types -o json | jq
{
"id": "c0lrpqun8s3m99789sgg",
"manufacturer": "BitScope",
"model": "Cluster Blade",
"partNumber": "CB04B",
"type": "Blade",
"url": "http://my.bitscope.com/store/?p=view&i=product+CB04B",
"createdAt": "2022-11-25 17:18:02.247",
"createdByUserId": "blmkmfd5jj89vu275l3g",
"updatedAt": "2022-11-25 17:18:02.247",
"updatedByUserId": "blmkmfd5jj89vu275l3g"
}
{
"id": "cdbuuo932ckju5n1t9p0",
"manufacturer": "BitScope",
"model": "48 Node Edge Rack",
"partNumber": "ER48A",
"type": "RackMount",
"url": "https://docs.bitscope.com/cluster-blade",
"createdAt": "2022-11-25 17:18:02.665",
"createdByUserId": "blmkmfd5jj89vu275l3g",
"updatedAt": "2022-11-25 17:18:02.665",
"updatedByUserId": "blmkmfd5jj89vu275l3g"
}
{
"id": "c6uuol7qrh9u4hh2bo60",
"manufacturer": "Seeed",
"model": "Jetson Mate",
"partNumber": "114992562",
"type": "Blade",
"url": "https://www.seeedstudio.com/Jetson-Mate-p-4899.html",
"createdAt": "2022-11-25 17:18:03.801",
"createdByUserId": "blmkmfd5jj89vu275l3g",
"updatedAt": "2023-04-29 17:20:30.362",
"updatedByUserId": "c1h03qj68fokvtj56vk0"
}
...
Get a single device
$ onprem get device c6uuol7qrh9u4hh2bo60
┌──────────────────────┬─────────┬──────────────┬─────────────┬───────────────────────────────────┬─────────────────┬─────────┐
│ id ┆ name ┆ manufacturer ┆ model ┆ uuid ┆ lastIpAddr ┆ tainted │
│ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- │
│ str ┆ str ┆ str ┆ str ┆ str ┆ str ┆ bool │
╞══════════════════════╪═════════╪══════════════╪═════════════╪═══════════════════════════════════╪═════════════════╪═════════╡
│ chai28932ckjgou9an3g ┆ c006-n2 ┆ NVIDIA ┆ Jetson Nano ┆ 8ed6b72b-9056-5f3e-8ef4-9a1e537d… ┆ 192.168.241.162 ┆ false │
└──────────────────────┴─────────┴──────────────┴─────────────┴───────────────────────────────────┴─────────────────┴─────────┘
Get HATs in Wide Format
$ onprem get hats -o wide
┌──────────────────────┬──────────────────────┬──────────────────────┬─────────────────────────┬──────────────────────┬─────────────────────────┐
│ id ┆ deviceId ┆ hatTypeId ┆ createdAt ┆ createdByUserId ┆ updatedAt │
│ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- │
│ str ┆ str ┆ str ┆ datetime[ns] ┆ str ┆ datetime[ns] │
╞══════════════════════╪══════════════════════╪══════════════════════╪═════════════════════════╪══════════════════════╪═════════════════════════╡
│ c772ic7qrh9vs0qgt3a0 ┆ c6ut0jvqrh9u4hh2bnq0 ┆ c5d549vqrh9ga1fc4ddg ┆ 2021-12-30 21:48:32.601 ┆ c1h03qj68fokvtj56vk0 ┆ 2021-12-30 21:48:32.601 │
│ c772iffqrh9vs0qgt3b0 ┆ c6ut2ffqrh9u4hh2bnqg ┆ c5d549vqrh9ga1fc4ddg ┆ 2021-12-30 21:48:45.573 ┆ c1h03qj68fokvtj56vk0 ┆ 2021-12-30 21:48:45.573 │
│ c772igfqrh9vs0qgt3bg ┆ c6ut45vqrh9u4hh2bnr0 ┆ c5d549vqrh9ga1fc4ddg ┆ 2021-12-30 21:48:49.934 ┆ c1h03qj68fokvtj56vk0 ┆ 2021-12-30 21:48:49.934 │
└──────────────────────┴──────────────────────┴──────────────────────┴─────────────────────────┴──────────────────────┴─────────────────────────┘%
CLI I²C Detect Subcommand
This subcommand asks an agent to discover information about a device's
I²C bus. The agent performs this operation directly using embedded logic,
preventing operators from having to install i2c-tools
on the target device.
graph LR; cli --> control_plane; control_plane <-- tunnel --> agent; subgraph user_edge[User Edge] cli[CLI]; end subgraph cloud[Cloud <small>api.on-prem.net</small>] control_plane[Control Plane]; end subgraph device_edge[Device Edge] agent[Agent]; end
List Components
This example is run against a Raspberry Pi carrying an Argon 40 Fan HAT.
$ onprem i2cdetect --device cibiquh32ckn0os7791g -y 1
0 1 2 3 4 5 6 7 8 9 a b c d e f
00: -- -- -- -- -- -- -- -- -- -- -- -- --
10: -- -- -- -- -- -- -- -- -- -- 1a -- -- -- -- --
20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
40: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
50: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
60: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
70: -- -- -- -- -- -- -- --
CLI Redfishtool Subcommand
CLI Redfishtool Chassis Subcommand
Redfishtool Chassis List
This operation downloads the full list of chasses.
$ onprem redfishtool Chassis list
{
"Members": [
{
"@odata.id": "/redfish/v1/Chassis/ce17n9h32ckrfkskr980",
"Id": "ce17n9h32ckrfkskr980"
},
{
"@odata.id": "/redfish/v1/Chassis/ce17nlh32ckrfkskrbqg",
"Id": "ce17nlh32ckrfkskrbqg"
},
...
],
"Members@odata.count": 22,
"Name": "Chassis Collection",
"_Path": "/redfish/v1/Chassis"
}
Redfishtool Chassis Get
This operation downloads a single chassis record.
$ onprem redfishtool Chassis get -I cfp4tn132ckg5rh8p5b0
#
# Chassis Resource:
{
"Name": "c005-a",
"Manufacturer": "BitScope",
"Oem": {
"bitscope.com": {
"stations": [
0,
1,
2,
3
],
"uuids": [
"9494b70e-3a96-4271-9796-b2d23dea95ab",
"cc95f756-3bd6-4a70-97ce-b39265ebd5b2",
"eb969771-38b6-4d73-b7e9-b0f242e8b5f6",
"8c92d716-3cf6-4a77-b78-b4b225ecf5d5"
]
}
},
"@odata.id": "/redfish/v1/Chassis/cfp4tn132ckg5rh8p5b0",
"Model": "Cluster Blade",
"PartNumber": "CB04B",
"UUID": "4d67a048-6b6e-5c13-8766-f3fd32f50429",
"Product": "On Prem Agent",
"@odata.type": "#Chassis.v1_21_0.Chassis",
"Id": "cfp4tn132ckg5rh8p5b0"
}
Redfishtool Chassis Asset Tags
Asset tags can be used to identify chasses.
Set an asset tag
$ onprem redfishtool Chassis setAssetTag abc123 -I cht7ri932ckk7b39l710
Asset tag has been set
Find a chassis by its asset tag
$ onprem redfishtool Chassis get -M AssetTag:abc123
#
# Chassis Resource:
{
"@odata.type": "#Chassis.v1_21_0.Chassis",
"Product": "On Prem Agent",
"Model": "Jetson Mate Cluster Advanced",
"Name": "c007",
"@odata.id": "/redfish/v1/Chassis/cht7ri932ckk7b39l710",
"Id": "cht7ri932ckk7b39l710",
"AssetTag": "abc123",
"Manufacturer": "Seeed"
}
CLI Redfishtool Systems Subcommand
Redfishtool Systems List
This operation downloads the full list of computer systems.
$ onprem redfishtool Systems list
{
"Members": [
{
"@odata.id": "/redfish/v1/Systems/c6uso9fqrh9u4hh2bnng",
"AssetTag": "def",
"Id": "c6uso9fqrh9u4hh2bnng"
},
{
"@odata.id": "/redfish/v1/Systems/c6ut2ffqrh9u4hh2bnqg",
"Id": "c6ut2ffqrh9u4hh2bnqg"
},
{
"@odata.id": "/redfish/v1/Systems/c6ut45vqrh9u4hh2bnr0",
"Id": "c6ut45vqrh9u4hh2bnr0"
},
...
],
"Members@odata.count": 62,
"Name": "Computer System Collection",
"_Path": "/redfish/v1/Systems"
}
Redfishtool Systems Get
This operation downloads a single computer system record.
$ onprem redfishtool Systems get -I cfp4tn132ckg5rh8p5b0
#
# Systems Resource:
{
"@odata.id": "/redfish/v1/Systems/cfp378932ckg5rh8nls0",
"@odata.type": "#ComputerSystem.v1_14_0.ComputerSystem",
"HostName": "c005-a0",
"Id": "cfp378932ckg5rh8nls0",
"Links": {
"Chassis": [
{
"@odata.id": "cfp4tn132ckg5rh8p5b0"
}
]
},
"Manufacturer": "Raspberry Pi",
"MemorySummary": {
"TotalSystemMemoryGiB": 7
},
"Model": "4B Rev 1.4",
"Name": "c005-a0",
"Oem": {
"bitscope.com": {
"blade": {
"stations": [
0,
1,
2,
3
],
"uuids": [
"9494b70e-3a96-4271-9796-b2d23dea95ab",
"cc95f756-3bd6-4a70-97ce-b39265ebd5b2",
"eb969771-38b6-4d73-b7e9-b0f242e8b5f6",
"8c92d716-3cf6-4a77-b78-b4b225ecf5d5"
]
},
"station": 0
}
},
"ProcessorSummary": {
"CoreCount": 4,
"Count": 4,
"LogicalProcessorCount": 4
},
"Product": "On Prem Agent",
"SerialNumber": "10000000c6699948",
"UUID": "9494b70e-3a96-4271-9796-b2d23dea95ab"
}
Redfishtool Systems Asset Tags
Asset tags can be used to identify computer systems.
Set an asset tag
$ onprem redfishtool Systems setAssetTag abc -I chse92h32ckk7b33ijbg
Asset tag has been set
Find a computer system by its asset tag
$ onprem redfishtool Systems get -M AssetTag:abc
#
# Systems Resource:
{
"@odata.id": "/redfish/v1/Systems/chse92h32ckk7b33ijbg",
"@odata.type": "#ComputerSystem.v1_14_0.ComputerSystem",
"AssetTag": "abc",
"HostName": "c001-b1-n1",
"Id": "chse92h32ckk7b33ijbg",
"Links": {
"Chassis": [
{
"@odata.id": "cfun66932ckl0mq3ff20"
}
]
},
"Manufacturer": "Raspberry Pi",
"MemorySummary": {
"TotalSystemMemoryGiB": 1
},
"Model": "4B Rev 1.4",
"Name": "c001-b1-n1",
"ProcessorSummary": {
"CoreCount": 4,
"Count": 4,
"LogicalProcessorCount": 4
},
"Product": "On Prem Agent",
"SerialNumber": "10000000cde3e2dc",
"UUID": "25fd21bc-ed22-5bf4-aff4-f7ecc07e634e"
}
Redfishtool Systems Reset
Reset a system. Allowed values defined by the DMTF Redfish spec include: On
, GracefulShutdown
, GracefulRestart
,
ForceRestart
, ForceOff
, ForceOn
, Nmi
, PushPowerButton
, and PowerCycle
.
Gracefully restart a node
$ onprem redfishtool Systems reset GracefulRestart -I chse92h32ckk7b33ijbg
CLI Run Subcommand
CLI Run a Lambda
This command invokes an existing lambda. Lambdas can run either at the control plane or on a device.
You may provide a --device
option to customize where the lambda is run.
Note that manually invoking a lambda on a device requires connectivity, and might be something you're only able to do during the factory burn-in phase of your project. In air-gapped environments, lambdas can work on high-throughput low-latency signals without any need of network connectivity.
Running at the control plane
graph LR; cli --> control_plane; control_plane --> lua_vm; subgraph user_edge[User Edge] cli[CLI]; end subgraph cloud[Cloud: api.on-prem.net] control_plane[Control Plane]; lua_vm[Embedded Lua VM] end
Running on a device
graph LR; cli --> control_plane; control_plane <-- tunnel --> agent; agent --> lua_vm; subgraph user_edge[User Edge] cli[CLI]; end subgraph cloud[Cloud: api.on-prem.net] control_plane[Control Plane]; end subgraph device_edge[Device Edge] agent[Agent]; lua_vm[Embedded Lua VM]; end
Register the lambda
# mylambda.yaml
id: abcd
name: example
description: >
A simple example that performs a transformation on the input event.
scriptContentType: text/x-lua
script: >
local M = {}
function M.handler(event, context)
local retval = event
if event['a'] ~= nil then
retval['d'] = event['a']+1
end
return retval
end
return M
$ onprem import lambdas mylambda.yaml
Run it
$ onprem run lambda abcd --device ci2fabp32ckvhk1g9qe0 --event '{"a":123,"b":true,"c":"dog"}'
{"a":123,"b":true,"c":"dog","d":124}
Lambdas
Lambdas provide a way to run custom code that reacts to certain events. These might include:
- network events like Kafka or Redis subscriptions
- IoT Bus events such as GPIO edge triggers
- platform events such as the preparation of a configuration bundle during device reconfiguration
When creating a new Lambda in the web console, number of templates are offered:
Lambdas are written in Lua for over-the-air deployability. That Lua will typically orchestrate native low-level modules that are built into the agent to support networking, storage, and IoT busses.
Running on a device
Most Lambdas will run within an agent at the device edge, where they are deployed as part of the agent's sealed configuration bundle, and are then able to run autonomously to perform workloads such as ETL or control functions without the need for reliable cloud connectivity.
graph LR; agent --> lambdas; lambdas --> databases; lambdas --> services; lambdas --> busses; subgraph device_edge[Device Edge] agent; databases[(Edge Databases)]; services[Network Services]; busses[IoT Busses]; end subgraph agent[Agent] lambdas[Lambdas]; end
Running at the control plane
Additionally, some Lambdas can run within an embedded Lua VM at the control plane. These types of Lambdas typically run during preparation of device configuration bundles, and they include hardware driver Lambdas for various blades, chasses, and HATs.
graph LR; lambdas --> databases; lambdas --> services; subgraph cloud[Cloud] control_plane; databases[(Cloud Databases)]; services[Network Services]; end subgraph control_plane[Control Plane: api.on-prem.net] control_plane[Control Plane]; lambdas[Lambdas] end
Structure of a Lambda
Lambdas are AWS Lambda compatible Lua module tables that
at a minimum must include a handler()
function.
local M = {}
function M.handler(event, context)
print('event has fired')
return {
-- SampleKey = 'sample value'
}
end
return M
In this example, a Lambda is written to take a picture using a Raspberry Pi camera.
While testing, Lambdas can be run manually via the CLI from a workstation at the developer edge.
$ onprem run lambda clv3b1c3v1vsk4qabftg --event-data-to-file out.jpeg
Wrote event[data] to out.jpeg (940.9K)
Embedded Modules
The following Lua modules are embedded in the On Prem platform and available for use by Lambdas and Lambda Triggers.
Module | Compute Kernel | LuaRocks Compatibles | Features |
---|---|---|---|
crc16 | mlua-crc16 (Rust) | luacrc16 | Checksums |
inspect | (pure Lua) | inspect | Stringify a Lua variable while debugging |
json | mlua-json (Rust) | lua-cjson, lunajson | JSON serde support |
kafka | mlua-kafka (Rust) | kafka |
Simple Kafka client (⛔︎ unavailable on armv7) |
periphery | mlua-periphery (Rust) | lua-periphery | Peripheral I/O |
rdkafka | mlua-rdkafka (Rust) |
Robust Kafka client (⛔︎ unavailable on armv7) |
|
socket | mlua-socket (Rust) | LuaSocket | Networking |
Lambda Examples
- Call WASM
- Include model files
- Interact with I²C Bus
- Interact with Serial Bus
- Take a Photo (Raspberry Pi)
- Toggle a LED
Call WASM
A lambda may bundle one or more associated WASM modules that will be deployed to the agent alongside the lambda. WASM modules may include functions like machine learning or tensor models that are easier to express in a language such as Rust.
Rust-based add_one() function
This Rust based WASM module exports an add_one()
function.
add_one.yaml
add_one.lua
Cargo.toml
src/
lib.rs
lib.rs:
#![allow(unused)] fn main() { #[no_mangle] pub extern "C" fn add_one(x: i32) -> i32 { x + 1 } }
Cargo.toml:
[package]
name = "add-one"
version = "0.1.0"
edition = "2018"
[lib]
crate-type = ["cdylib"]
Build the WASM module:
$ rustup target add wasm32-unknown-unknown
$ cargo build --target wasm32-unknown-unknown --release
Register the lambda
$ onprem generate xid
cmv805656a11vubtf6pg
# add_one.yaml
id: cmv805656a11vubtf6pg
kind: Lambda
name: add_one
description: >
A lambda that calls a WASM function to add one.
runAt:
deviceId: ci2fabp32ckvhk1g9qe0
fileInfoIds:
- "@target/wasm32-unknown-unknown/release/add_one.wasm"
scriptContentType: text/x-lua
script: "@add_one.lua"
-- add_one.lua
local wasmer = require('wasmer')
local store = wasmer.Store:default()
local M={}
function M.handler(event, context)
local path = context.path_for_filename('add_one.wasm')
local f = io.open(path, 'rb')
local binary = f:read('*a')
local module = wasmer.Module:from_binary(store, binary)
local instance = wasmer.Instance:new(store, module)
local add_one = instance.exports:get_function('add_one')
return add_one:call(store, event)
end
return M
$ onprem apply add_one.yaml
If the agent is connected to the control plane, it will have downloaded its new config bundle containing the new lambda and associated files within a few seconds.
View Lambda in the Console
Notice the lambda now appears in the cloud console, and that it contains the associated WASM file add_one.wasm
.
Run the Lambda
$ onprem run lambda cmv805656a11vubtf6pg --event '123'
124
Include model files
A lambda may define associated files that will be deployed to the agent alongside the lambda. Files may be things like machine learning or tensor models.
Register the lambda
lambda_that_includes_model_files.yaml
models/
currencies.csv
timezones.csv
keras-tract-tf2-example.onnx
$ onprem generate xid
cmpsf7656a16efdhjrf0
# lambda_that_includes_model_files.yaml
id: cmpsf7656a16efdhjrf0
kind: Lambda
name: lambda_that_includes_model_files.yaml
description: >
A lambda that uses associated model files.
runAt:
deviceId: ci2fabp32ckvhk1g9qe0
fileInfoIds:
- "@models/currencies.csv"
- "@models/timezones.csv"
- "@models/keras-tract-tf2-example.onnx"
scriptContentType: text/x-lua
script: >
local M={}
function M.handler(event, context)
local path = context.path_for_filename('currencies.csv')
local currencies = io.open(path, 'r')
end
return M
$ onprem apply lambda_that_includes_model_files.yaml
Interact with I²C Bus
This lambda reads the input voltage on a SixFab UPS Hat. The On Prem CLI is used to demonstrate manually triggering the lambda and taking delivery of the event JSON using a remote desktop.
graph LR; cli --> control_plane; control_plane <-- tunnel --> agent; agent -- i2c --> hat; subgraph user_edge[User Edge] cli[CLI]; end subgraph cloud[Cloud <small>api.on-prem.net</small>] control_plane[Control Plane]; end subgraph device_edge[Device Edge] agent[Agent]; hat[SixFab UPS Fan HAT]; end
Note that manually triggering a lambda is unusual in that it requires device connectivity to the control plane. A more typical scenario is where Lambdas and their Lambda Trigger control loops run autonomously at the device edge, regardless of the device's connectivity to the control plane.
Register the lambda
$ onprem generate xid
clut5qm56a1d39be96j0
# get_sixfab_ups_hat_input_voltage.yaml
name: get_sixfab_ups_hat_input_voltage
kind: Lambda
id: clut5qm56a1d39be96j0
description: >
Read the input voltage on a SixFab UPS HAT.
runAt:
deviceId: ci2fabp32ckvhk1g9qe0
scriptContentType: text/x-lua
script: >
local socket = require('socket')
local I2C = require('periphery.I2C')
function lshift(a, b)
return a * 2 ^ b
end
local M={}
function M.handler(event, context)
local i2c = I2C('/dev/i2c-1')
local addr = 0x41
-- send GetInputVoltage (0x02) command
local req = {0xcd, 0x02, 0x01, 0x00, 0x00, 0xc8, 0x9a}
i2c:transfer(addr, { req })
-- wait for HAT to prepare response
socket.sleep(0.01)
-- read response
local res = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, flags=I2C.I2C_M_RD}
i2c:transfer(addr, { res })
-- decode response
local crc_hi, crc_lo = res[2], res[3]
local crc = lshift(crc_hi, 8) + crc_lo
local datalen_hi, datalen_lo = res[4], res[5]
local datalen = lshift(datalen_hi, 8) + datalen_lo
assert(datalen == 4)
local x3, x2, x1, x0 = res[6], res[7], res[8], res[9]
local raw_reading = lshift(x3, 24) + lshift(x2, 16) + lshift(x1, 8) + x0
local voltage = raw_reading / 1000
-- respond
return {voltage=voltage, rawReading=raw_reading, crc=crc}
end
return M
$ onprem apply get_sixfab_ups_hat_input_voltage.yaml
It will now show up in the cloud console.
Invoke it
$ onprem run lambda clut5qm56a1d39be96j0
{"crc":514,"rawReading":4928,"voltage":4.928}
Interact with Serial Bus
This lambda demonstrates use of a serial bus by cycling the power of a node mounted on a BitScope Cluster Blade.
Cycling the power is done using the BMC from a 2nd node. In this diagram, Device 0 is shown being used to manage the power of Devices 1, 2, or 3.
graph LR; cli --> control_plane; control_plane <-- tunnel --> agent0; agent0 --> bmc; bmc --> device0; bmc --> device1; bmc --> device2; bmc --> device3; subgraph user_edge[User Edge] cli[CLI]; end subgraph cloud[Cloud <small>api.on-prem.net</small>] control_plane[Control Plane]; end subgraph device_edge[Device Edge] blade; end subgraph blade[CB04B Cluster Blade] bmc; device0; device1; device2; device3; end subgraph device0[Device 0, station 124] agent0[Agent]; end subgraph device1[Device 1, station 125] agent1[Agent]; end subgraph device2[Device 2, station 126] agent2[Agent]; end subgraph device3[Device 3, station 127] agent3[Agent]; end
Register the lambda
$ onprem generate xid
cj7db73erad7pt31vcng
# bitscope_cycle_power.yaml
id: cj7db73erad7pt31vcng
kind: Lambda
name: bitscope_cycle_power
description: >
Cycle the power of a node mounted on a BitScope Cluster Blade.
runAt:
# Run at Device 0 (station 124)
deviceId: ci2fabp32ckvhk1g9qe0
scriptContentType: text/x-lua
script: >
local socket = require('socket')
local Serial = require('periphery.Serial')
function write_command(serial, command, timeout_ms)
for i = 1, #command do
local c = command:sub(i, i)
serial:write(c)
assert(serial:read(1, timeout_ms) == c)
end
end
function set_remote_power(serial, station, value, timeout_ms)
assert(type(station) == 'number')
assert(type(value) == 'boolean')
local command = string.format("[%2x]{", station) .. (value and '/' or '\\') .. '}'
write_command(serial, command, timeout_ms)
end
local M={}
function M.handler(event, context)
assert(type(event.device) == 'string')
assert(type(event.baudrate) == 'number')
local serial = Serial(event.device, event.baudrate)
local timeout_ms = event.timeout or 50
-- send remote power off command
set_remote_power(serial, event.station, false, timeout_ms)
-- wait a bit
socket.sleep(0.25)
-- send remote power on command
set_remote_power(serial, event.station, true, timeout_ms)
-- respond
return {station=event.station, ok=true}
end
return M
$ onprem apply bitscope_cycle_power.yaml
It will now show up in the cloud console.
Run it
$ onprem run lambda cj7db73erad7pt31vcng --event '{"station":126,"device":"/dev/serial0","baudrate":115200}'
{"station":126,"ok":true}
Take a Photo (Raspberry Pi)
This lambda captures a still frame using a Raspberry Pi camera on a remote edge device. The On Prem CLI is used to demonstrate manually triggering the lambda and taking delivery of the image using a remote desktop.
graph LR; cli --> control_plane; control_plane <-- tunnel --> agent; agent --> camera; subgraph user_edge[User Edge] cli[CLI]; end subgraph cloud[Cloud <small>api.on-prem.net</small>] control_plane[Control Plane]; end subgraph device_edge[Device Edge] agent[Agent]; camera[Camera]; end
Note that manually triggering a lambda is unusual in that it requires device connectivity to the control plane. A more typical scenario is where Lambdas and their Lambda Trigger control loops run autonomously at the device edge, regardless of the device's connectivity to the control plane.
Register the lambda
$ onprem generate xid
clut5qm56a1d39be96j0
# capture_image_rpi.yaml
id: clut5qm56a1d39be96j0
kind: Lambda
name: capture_image_rpi
description: >
Capture a still frame from a Raspberry Pi camera.
runAt:
deviceId: ci2fabp32ckvhk1g9qe0
scriptContentType: text/x-lua
script: >
local M = {}
function M.handler(event, context)
local filename = os.tmpname()
os.execute('rpicam-jpeg --nopreview -o ' .. filename)
local file = io.open(filename, 'rb')
local event = {
data = file:read('*a'),
}
io.remove(file)
return event
end
return M
$ onprem apply capture_image_rpi.yaml
It will now show up in the cloud console.
Invoke it
The CLI can display the returned event as JSON, which is inefficient:
$ onprem run lambda clut5qm56a1d39be96j0
{"data":[...much raw data...]}
But it can also pluck the data field out of the returned JSON, which is efficient and does not involve JSON
parsing. This is because agents return event data
fields separately for efficient transport encoding.
If the returned event contains any other fields, they are displayed to stdout
while other things are
written to stderr
.
$ onprem run lambda clut5qm56a1d39be96j0 --event-data-to-file out.jpeg > event.json
Wrote event[data] to out.jpeg (940.9K)
$ cat event.json
{}
$ open out.jpeg
Toggle an LED
This lambda toggles the state of led0
on a Raspberry Pi.
The On Prem CLI is used to demonstrate manually triggering the lambda and taking delivery
of the event JSON using a remote desktop.
graph LR; cli --> control_plane; control_plane <-- tunnel --> agent; agent --> led; subgraph user_edge[User Edge] cli[CLI]; end subgraph cloud[Cloud <small>api.on-prem.net</small>] control_plane[Control Plane]; end subgraph device_edge[Device Edge] agent[Agent]; led[LED]; end
Note that manually triggering a lambda is unusual in that it requires device connectivity to the control plane. A more typical scenario is where Lambdas and their Lambda Trigger control loops run autonomously at the device edge, regardless of the device's connectivity to the control plane.
Setup
Start by disabling the default triggering for led0
, so that you can use it for your own purposes.
$ echo none | sudo tee /sys/class/leds/led0/trigger
Register the lambda
$ onprem generate xid
clutm1e56a1dn0f2p4dg
# toggle_led0.yaml
id: clutm1e56a1dn0f2p4dg
kind: Lambda
name: toggle_led0
description: >
Toggle led0.
runAt:
deviceId: ci2fabp32ckvhk1g9qe0
scriptContentType: text/x-lua
script: >
local LED = require('periphery.LED')
local M={}
function M.handler(event, context)
local led = LED('led0')
local currentValue = led:read()
local newValue = not currentValue
led:write(newValue)
return {currentValue=currentValue, newValue=newValue}
end
return M
$ onprem apply toggle_led0.yaml
It will now show up in the cloud console.
Run it twice
$ onprem run lambda clutm1e56a1dn0f2p4dg
{"currentValue":true,"newValue":false}
$ onprem run lambda clutm1e56a1dn0f2p4dg
{"currentValue":false,"newValue":true}
Cleanup
Restore the default triggering for led0
with:
$ echo mmc0 | sudo tee /sys/class/leds/led0/trigger
Lambda Triggers
Lambda Triggers provide a way to generate events that Lambdas can respond do. Every Lambda Trigger is expected to run a control loop, and is given a dedicated thread in the agent or control plane.
When creating a new Lambda Trigger in the web console, number of templates are offered:
Structure of a Lambda Trigger
A Lambda Trigger contains an initialization function which can be used to perform resource allocations. A context object is made available and can be used for temporary storage.
Then a Lambda Trigger provides a run function, which should emit events that will be delivered to Lambdas.
local redis = require('redis')
local socket = require('socket')
local M = {}
function M.init(context, params)
local redis_client = redis.connect('my-redis', 6379)
assert(redis_client:ping())
context['redis_client'] = redis_client
end
function M.run(context)
local redis_client = context.redis_client
local channels = {'foo', 'bar'}
for msg, abort in redis_client:pubsub({subscribe=channels}) do
local event = {
timestamp = socket.gettime(),
msg = msg
}
coroutine.yield(event)
end
end
return M
Lambda Examples
Periodic
This example demonstrates defining a custom Lambda Trigger that can periodically trigger Lambdas.
Initial Provisioning
graph LR; cli --> control_plane; console --> control_plane; control_plane <-- tunnel --> agent; subgraph user_edge[User Edge] cli[CLI]; console[Console]; end subgraph cloud[Cloud <small>api.on-prem.net</small>] control_plane[Control Plane]; end subgraph device_edge[Device Edge] agent[Agent]; end
Subsequent Autonomous Edge Operation
graph LR; agent --> trigger[Lambda Trigger]; trigger --> lambda1; trigger --> lambda2; trigger --> lambda3; subgraph device_edge[Device Edge] agent; end subgraph agent[Agent] trigger; lambda1[Lambda 1]; lambda2[Lambda 2]; lambda3[Lambda 3]; end
Define the lambda trigger
$ onprem generate xid
cj7br83erad4ipi8nb4g
# my_periodic_lambda_trigger_type.yaml
id: cj7br83erad4ipi8nb4g
kind: LambdaTriggerType
name: periodic_trigger
description: >
Periodically trigger lambdas.
runsAtControlPlane: true
runsAtDevices: true
scriptContentType: text/x-lua
script: >
local socket = require('socket')
local M = {}
function M.init(context, params)
end
function M.run(context)
while true do
local event = {
timestamp = socket.gettime()
}
coroutine.yield(event)
socket.sleep(0.5) -- seep for 1/2 second
end
end
return M
Upload it to the control plane
$ onprem apply my_periodic_lambda_trigger_type.yaml
It will now show up in the cloud console.
And it will also now show up as one of the trigger choices when editing a Lambda.
GPIO Edge Trigger
This example demonstrates defining a custom Lambda Trigger that subscribes to GPIO edge events via the Linux kernel. It then demonstrates various Lambdas that respond to it and perform various functions.
Initial Provisioning
graph LR; cli --> control_plane; console --> control_plane; control_plane <-- tunnel --> agent; subgraph user_edge[User Edge] cli[CLI]; console[Console]; end subgraph cloud[Cloud <small>api.on-prem.net</small>] control_plane[Control Plane]; end subgraph device_edge[Device Edge] agent[Agent]; end
Subsequent Autonomous Edge Operation
graph TB; agent --> trigger[Lambda Trigger]; pin -- edge trigger --> trigger; trigger --> lambda1; trigger --> lambda2; trigger --> lambda3; subgraph device_edge[Device Edge] agent; pin[GPIO Pin]; end subgraph agent[Agent] trigger; lambda1[Lambda 1]; lambda2[Lambda 2]; lambda3[Lambda 3]; end
Define the lambda trigger
$ onprem generate xid
cj7ca3berad6gieb3rbg
# my_gpio_trigger_type.yaml
id: cj7ca3berad6gieb3rbg
kind: LambdaTriggerType
name: gpio_trigger
description: >
Trigger lambdas when a GPIO edge event occurs.
runsAtControlPlane: false
runsAtDevices: true
scriptContentType: text/x-lua
script: >
local GPIO = require('periphery.GPIO')
local socket = require('socket')
local M = {}
function M.init(context)
local params = {
path = '/dev/gpiochip0',
line = 23,
direction = 'in',
edge = 'both',
}
local gpio = GPIO(params)
context['gpio'] = gpio
end
function M.run(context)
local gpio = context.gpio
while true do
local event = gpio:read_event()
coroutine.yield(event)
socket.sleep(0.005)
end
end
return M
The sleep used above is precautionary but unnecessary when performing a blocking call such as
read_event()
. Each Lambda Trigger Type loop runs in a dedicated thread, and run loops are
free to peg the CPU of a single core if they want.
Upload it to the control plane
$ onprem apply ./my_gpio_trigger_type.yaml
It will now show up in the cloud console.
And it will also now show up as one of the trigger choices when editing a Lambda.
Lambda Example 1: Configure an LED to follow the GPIO pin
$ onprem generate xid
cj7co6jerad78frcc100
# follow_gpio23_with_led0.yaml
id: cj7co6jerad78frcc100
kind: Lambda
name: follow_gpio_with_led0
description: >
Follow GPIO pin 23 and display with led0.
runAt:
deviceId: ci2fabp32ckvhk1g9qe0
triggerTypeId: cj7ca3berad6gieb3rbg
scriptContentType: text/x-lua
script: >
local LED = require('periphery.LED')
local led = LED('led0')
local M={}
function M.handler(event, context)
local newValue = false
if event.edge == 'rising' then
newValue = true
end
led:write(newValue)
return {edge=event.edge, timestamp=event.timestamp}
end
return M
$ onprem apply ./follow_gpio23_with_led0.yaml
Lambda Example 2: Aggregate the GPIO events in Redis
$ onprem generate xid
clv0p4u56a1fjkem7h9g
# follow_gpio23_and_aggregate_in_redis.yaml
id: clv0p4u56a1fjkem7h9g
kind: Lambda
name: follow_gpio23_and_aggregate_in_redis
description: >
Follow GPIO pin 23 and aggregate events in Redis.
runAt:
deviceId: ci2fabp32ckvhk1g9qe0
triggerTypeId: cj7ca3berad6gieb3rbg
scriptContentType: text/x-lua
script: >
local redis = require('redis')
local redisClient = redis.connect('my-redis', 6379)
assert(redisClient:ping())
local M={}
function M.handler(event, context)
redisClient:pipeline(function(pipeline)
-- Count total events for all time
pipeline:incrby('event_count', 1)
-- Also count events per day
pipeline:incrby('event_count_' .. os.date('%Y-%m-%d'), 1)
-- Also count events per hour
pipeline:incrby('event_count_' .. os.date('%Y-%m-%dT%H'), 1)
end)
return {edge=event.edge, timestamp=event.timestamp}
end
return M
$ onprem apply follow_gpio23_and_aggregate_in_redis.yaml
Kafka
This example demonstrates defining a custom Lambda Trigger that subscribes to a Kafka topic.
Initial Provisioning
graph LR; cli --> control_plane; console --> control_plane; control_plane <-- tunnel --> agent; subgraph user_edge[User Edge] cli[CLI]; console[Console]; end subgraph cloud[Cloud <small>api.on-prem.net</small>] control_plane[Control Plane]; end subgraph device_edge[Device Edge] agent[Agent]; end
Subsequent Autonomous Edge Operation
graph TB; agent --> trigger[Lambda Trigger]; trigger --> lambda1; trigger --> lambda2; trigger --> lambda3; kafka -- subscribe --> trigger; subgraph device_edge[Device Edge] agent; kafka[(Kafka)] end subgraph agent[Agent] trigger; lambda1[Lambda 1]; lambda2[Lambda 2]; lambda3[Lambda 3]; end
Define the lambda trigger
$ onprem generate xid
cj7ei4jerad89eavqu70
# kafka_trigger.yaml
id: cj7ei4jerad89eavqu70
kind: LambdaTriggerType
name: kafka_trigger
description: >
Trigger lambdas driven by a Kafka subscription.
runsAtControlPlane: false
runsAtDevices: true
scriptContentType: text/x-lua
script: >
local kafka = require('kafka')
local settings = {
['bootstrap.servers'] = 'c001-b6-n3:9092,c001-b6-n4:9092,c001-b6-n5:9092',
['auto.offset.reset'] = 'latest',
['group.id'] = 'onprem.lambda-trigger.kafka_trigger',
}
local consumer = kafka.consumer(settings)
local M = {}
function M.init(context)
consumer:subscribe('topic1', 'topic2', 'topic3')
context['consumer'] = consumer
end
function M.run(context)
local consumer = context.consumer
while true do
local message = consumer:poll(1000)
if message then
coroutine.yield(message)
end
end
end
return M
Upload it to the control plane
$ onprem apply kafka_trigger.yaml
It will now show up in the cloud console.
And it will also now show up as one of the trigger choices when editing a Lambda.
When a subscription yields a new message, it will trigger associated Lambda with an event containing the following fields:
timestamp
(number)topic
(string)partition
(number)offset
(number)key
(string)payload
(string)
Redis
This example demonstrates defining a custom Lambda Trigger that subscribes to a Redis pub+sub channel. It then demonstrates a Lambda that responds.
Initial Provisioning
graph LR; cli --> control_plane; console --> control_plane; control_plane <-- tunnel --> agent; subgraph user_edge[User Edge] cli[CLI]; console[Console]; end subgraph cloud[Cloud <small>api.on-prem.net</small>] control_plane[Control Plane]; end subgraph device_edge[Device Edge] agent[Agent]; end
Subsequent Autonomous Edge Operation
graph TB; agent --> trigger[Lambda Trigger]; trigger --> lambda1; trigger --> lambda2; trigger --> lambda3; redis -- subscribe --> trigger; subgraph device_edge[Device Edge] agent; redis[(Redis)] end subgraph agent[Agent] trigger; lambda1[Lambda 1]; lambda2[Lambda 2]; lambda3[Lambda 3]; end
Define the lambda trigger
$ onprem generate xid
ck86ttgdr07e6c71dnjg
# my_redis_subscribe.yaml
id: ck86ttgdr07e6c71dnjg
kind: LambdaTriggerType
name: my_redis_subscribe_trigger_type
description: >
Trigger lambdas when a Redis pub+sub event fires.
runsAtControlPlane: false
runsAtDevices: true
scriptContentType: text/x-lua
script: >
local redis = require('redis')
local socket = require('socket')
local M = {}
function M.init(context)
local redis_client = redis.connect('my-redis', 6379)
assert(redis_client:ping())
context['redis_client'] = redis_client
end
function M.run(context)
local redis_client = context.redis_client
local channels = {'foo', 'bar'}
for msg, abort in redis_client:pubsub({subscribe=channels}) do
local event = {
timestamp = socket.gettime(),
msg = msg
}
coroutine.yield(event)
end
end
return M
Upload it to the control plane
$ onprem apply ./my_redis_subscribe.yaml
It will now show up in the cloud console.
And it will also now show up as one of the trigger choices when editing a Lambda.
Configure a Lambda to respond
$ onprem generate xid
ck871o8dr07ebbbn2h30
# respond_to_redis_events.yaml
id: ck871o8dr07ebbbn2h30
kind: Lambda
name: respond_to_redis_events
description: >
Respond to events received from Redis pub+sub channel.
runAt:
deviceId: ci2fabp32ckvhk1g9qe0
triggerTypeId: ck86ttgdr07e6c71dnjg
scriptContentType: text/x-lua
script: >
local M={}
function M.handler(event, context)
-- TODO do something with the event here
return event
end
return M
$ onprem apply respond_to_redis_events.yaml
Manually Trigger
$ redis-cli publish foo 123
Continuous Video Frame Capture
This example demonstrates a custom Lambda Trigger that repeatedly captures still frames using a Raspberry Pi camera. It then demonstrates a Lambda responding to the trigger by delivering the images to a Kafka based inference pipeline.
Initial Provisioning
graph LR; cli --> control_plane; console --> control_plane; control_plane <-- tunnel --> agent; subgraph user_edge[User Edge] cli[CLI]; console[Console]; end subgraph cloud[Cloud <small>api.on-prem.net</small>] control_plane[Control Plane]; end subgraph device_edge[Device Edge] agent[Agent]; end
Subsequent Autonomous Edge Operation
graph TB; agent --> trigger[Lambda Trigger]; trigger --> lambda1 -- image.jpeg --> kafka; trigger --> lambda2; trigger --> lambda3; camera -- libcamera --> trigger; subgraph device_edge[Device Edge] agent; camera[Camera] kafka[(Redpanda Edge)] end subgraph agent[Agent] trigger; lambda1[Lambda 1]; lambda2[Lambda 2]; lambda3[Lambda 3]; end
Define the lambda trigger
$ onprem generate xid
cmalphe56a11da41vqsg
# continuous_video_frame_capture_raspberry_pi.yaml
id: cmalphe56a11da41vqsg
kind: LambdaTriggerType
name: continuous_video_frame_capture_raspberry_pi
description: >
Capture continuous still frames from a Raspberry Pi camera.
runsAtControlPlane: false
runsAtDevices: true
scriptContentType: text/x-lua
script: >
local M = {}
function M.init(context)
end
function M.run(context)
local filename = os.tmpname()
while true do
os.execute('rpicam-jpeg --nopreview -o ' .. filename)
local file = io.open(filename, 'rb')
local event = {
data = file:read('*a'),
}
io.remove(file)
coroutine.yield(event)
end
end
return M
Upload it to the control plane
$ onprem apply ./continuous_video_frame_capture_raspberry_pi.yaml
It will now show up in the cloud console, and will now show up as one of the trigger choices when editing a Lambda.
Configure a Lambda to respond
$ onprem generate xid
cmalqo656a11eos3sqb0
# deliver_images_to_kafka.yaml
id: cmalqo656a11eos3sqb0
kind: Lambda
name: deliver_images_to_kafka
description: >
Deliver still frame images to a Kafka based inference pipeline.
runAt:
deviceId: ci2fabp32ckvhk1g9qe0
triggerTypeId: cmalphe56a11da41vqsg
scriptContentType: text/x-lua
script: >
local kafka = require('kafka')
local socket = require('socket')
local settings = {
['bootstrap.servers'] = 'my-broker-0:9092,my-broker-1:9092,my-broker-2:9092',
['group.id'] = 'onprem.lambda.kafka',
}
local producer = kafka.producer(settings)
local M={}
function M.handler(event)
local key = socket.gettime()
local value = event.data
producer:produce(key, value)
producer:poll(1000)
end
return M
$ onprem apply deliver_images_to_kafka.yaml
It will now show up in the cloud console.
Manually Trigger for testing
$ onprem run lambda cmalqo656a11eos3sqb0 --event-data-from-file ./my.jpeg